
Naval Research
Stennis Space Center, MS

Laboratory
39529-5004

V

NRL/MR/7441--97-8073

Compressed Aeronautical Chart
Access Software

PERRY B. WISCHOW
MAURA C. LOHRENZ

Mapping, Charting, and Geodesy Branch
Marine Geosciences Division

July 24, 1998

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE Form Approved
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden or any other aspect of this collectionof information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Manaqement and Budget. Paperwork Reduction Project (070401 881 Washinetnn. C 20503'
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 24,1998 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Compressed Aeronautical Chart Access Software Job Order No. 574562500
Program Element No. DMA

6. AUTHOR(S) Project No.

Perry B. Wischow and Maura C. Lohrenz Task No.

Accession No. DN154123
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Naval Research Laboratory
Marine Geosciences Division NRL/MR/7441--97-8073
Stennis Space Center, MS 39529-5004

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Imagery and Mapping Agency
8613 Lee Hwy.
Fairfax, VA 22031-2137

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

The Compressed Aeronautical Chart (CAC) data base is a global library of compressed, scanned, aeronautical
charts that support Navy and Marine Corps aircraft moving-map displays and mission planning systems. The source
for the CAC library is the National Imagery and Mapping Agency (NIMA) standard ARC (equal Arc-second Raster
Chart) Digitized Raster Graphics (ADRG) image data set. ADRG is compressed and transformed into CAC via vector
quantization and color compression techniques. The Map Data Formatting Facility (MDFF) of the Naval Research
Laboratory, Stennis Space Center, MS (NRLSSC), produced the CAC library from April 1989 until September 1995,
when NRLSSC transitioned the CAC Production System to NIMA.

This port is a programmer's reference for accessing the CAC library via NRL-developed CAC Access Software,
which is a user-callable suite of utility programs. The CAC Access Software was written in ANSI C and is currently
running under the following operating systems: Open VMS, Unix, MS-DOS, Windows 3.1, Windows 95, and Macintosh.

14. SUBJECT TERMS 15. NUMBER OF PAGES

digital maps, optical storage, data bases, data compression, aeronautical charts, 32
mission planning 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

NSN 7540-01-280-5500

Compressed Aeronautical Chart Access Software
Perry B. Wischow and Maura C. Lohrenz

Contents

Introduction ... 1

CAC Access Software ... 3

High-Level Access Routines ... 3

Low-Level Access Routines ... 4

Miscellaneous Access Routines ... 6

Acknowledgements ... 7

References ... 7

Appendix A: Entry Point Descriptions for High-Level Access Routines 8

Appendix B: Entry Point Descriptions for Low-Level Access Routines 11

Appendix C: Entry Point Descriptions for Miscellaneous Access Routines 23

Appendix D: High Level Function Calling Order .. 26

11

Introduction

The Compressed Aeronautical Chart (CAC) database is a global library of compressed, scanned,
aeronautical charts that support Navy and Marine Corps aircraft moving-map displays and
mission planning systems. The source for the CAC library is the National Imagery and Mapping
Agency (NIMA) standard ARC (equal Arc-second Raster Chart) Digitized Raster Graphics
(ADRG) image data set. ADRG is compressed and transformed into CAC via vector
quantization and color compression techniques. The Map Data Formatting Facility (MDFF) of
the Naval Research Laboratory, Stennis
from April, 1989, until September,
when NRLSSC transitioned the
Production System to NIMA.

Space
1995,
CAC

NIMA distributes CAC installments on
Compact Disk Read-Only Memory
(CDROM). Each CDROM contains data at
one of seven available chart scales, from
1:5M (M=million) to 1:50k (k=thousand), as
listed in table 1. As of 1995, there were 34
CDROMs in the CAC library (table 3). For a
more recent listing, the reader is referred to
NIMA Customer Support.

CAC data is structured according to the
Tessellated Spheroid (TS) map projection
system. TS divides the world into five zones
(table 2). Each zone is divided into rows and
columns of segments, and each segment
represents approximately 2 in x 2 in of paper
chart. The geographic coverage of a segment
is dependent on the chart scale and the zone in
which the segment is located. Lohrenz, et al.
(1993) describes the TS projection system in

Center, MS (NRLSSC), produced the CAC library

Table 1. Available CAC scales and chart series

Scale Chart Series

1:5M Global Navigation Chart (GNC)
1 :2M Jet Navigation Chart (JNC)
1:1M Operational Navigation Chart (ONC)
1:500k Tactical Pilotage Chart (TPC)
1:250k Joint Operational Graphics (JOG)
1:100k Topographic Line Map (TLM) - 100
1:50k TLM-50

Table 2. TS geographic zones

Zone Zone name Southern Northern
ID latitude latitude

0 South Polar 90.00 S 51.69 S
I S. Temperate 51.69 S 31.38 S
2 Equatorial 31.38 S 31.38 N
3 N. Temperate 31.38 N 51.69 N
4 North Polar 51.69 N 90.00 N

more detail, and Lohrenz and Ryan (1990) documents the CAC file structure. The reader is
advised to become familiar with these reports prior to using the CAC Access Software.

This report is a programmer's reference for accessing the CAC library via NRL-developed CAC
Access Software, which is a user-callable suite of utility programs. The CAC Access Software
was written in ANSI C and is currently running under the following operating systems:
OpenVMS, Unix, MS-DOS, Windows 3.1, Windows 95 and Macintosh. Appendices A, B, and
C of this report contain the entry point descriptions for the High-Level, Low-Level and
Miscellaneous Access Routines, respectively. Appendix D contains the High-Level Function
Calling Order.

1

Table 3. CAC library installments as of September, 1995.

MDFF Library # DMA Stock # ed. Geographic Coverage Date

GNC (1:5M scale)

CD-1 995-A-MAP6-00033 ACNxxGNCxxO I I Worldwide coverage | 09195
JNC (1:2M scale)

CD-1 991 -B-MAP5-10006 ACNxxJNCxxO 1 N/S Am., Greenland, Australia, USSR 10/91
CD-1 992-A-MAP5-00008 ACNxxJNCxxO2 I Europe, USSR, Africa, China, Japan 03/92

ONC (1:1,000,000 scale)
CD-1 994-A-MAP4-00032 ACNxxONCxxOi 1 Eurasia 9/94
CD-1991-A-MAP4-00010 ACNxxONCxxO2 1 N/S Am., Greenland, Iceland, Arctic 0. 08/92
CD-1 994-A-MAP4-00031 ACNxxONCxxO3 1 India, Indonesia, S.Pacific 08194
CD-1994-A-MAP4-00030 ACNxxONCxxO4 1 Africa, Saudi Arabia 07/94
CD-1994-A-MAP4-00029 ACNxxONCxxO5 1 S.America, Australia, So. Pacific 05/94

JOG (1:250,000 scale)

CD-1991-A-MAP2-10007 ACNxxI5OIAO9 1 Western U.S. 11/91
CD-1992-A-MAP2-00009 ACNxx15O1A1O I Eastern U.S. 04/92
CD-1 993-A-MAP2-00016 ACNxx15O1A16 1 Sea of Japan 03/93
CD-1993-A-MAP2-00017 ACNxx15O1A2021 I S. China Sea 03/93
CD-1 993-A-MAP2-00018 ACNxx1501A27 I Somalia/Ethiopia 04/93
CD-1 993-A-MAP2-00019 ACNxx1501A12 I Western Mediterranean 05/93
CD-1993-A-MAP2-00020 ACNxx1 501A1 9 1 Saudi Arabia 05/93
CD-1993-A-MAP2-00022 ACNxxI501A23 I Caribbean 07/93
CD-1 993-A-MAP2-00023 ACNxx15O1A13 1 Black Sea & Caspian Sea 09/93
CD-1 993-A-MAP2-00024 ACNxx1501A22 1 Central America 09/93
CD-1 994-A-MAP2-00026 ACNxx15OAO4 1 U.K. & Baltic 02/94
CD-1 993-A-MAP2-00027 ACNxx15OAO8 1 Alaska 02/94
CD-1994-A-MAP2-00028 ACNxx15O1A14 1 Afghanistan & NE Iran 05/94

TPC (1:500,000 scale)

CD-1 995-C-MAP3-1 0001 ACNxxTPCxxO71O 3 Update of U.S., Caribbean, and Panama 09/95
CD-1 991-B-MAP3-10002 ACNxxTPCxxO3O9A 2 Update of Desert Storm 06/91
CD-1991-A-MAP3-10003 ACNxxTPCxxO5I2A I W. Pacific Rim & Hawaii 03/91
CD-1 991-A-MAP3-10004 ACNxxTPCxxO5O6 1 No. Pacific (incl. Alaska & NE USSR) 04/91
CD-1 991 -A-MAP3-10005 ACNxxTPCxxO2O8A 1 Med., Europe, Scandinavia, Iceland 06/91
CD-1 992-A-MAP3-00011 ACNxxTPCxxO411A 1 India and China 10/92
CD-1992-A-MAP3-00012 ACNxxTPCxxO3O4 1 W. Russia and E. Mongolia 11/92
CD-1 992-A-MAP3-00013 ACNxxTPCxxO4O5 I Siberia 01/93
CD-1 992-A-MAP3-00014 ACNxxTPCxx1216 1 Australia, E. Indonesia 01/93
CD-1 992-A-MAP3-00015 ACNxxTPCxxI014 1 S. America 01/93
CD-1993-A-MAP3-00021 ACNxxTPCxxO8O9 1 N. Central Africa 07/93
CD-1993-A-MAP3-00025 ACNxxTPCxxO915 1 Southern Africa and Madagascar 10193

2

CAC Access Software

The CAC Access Software is made up of twelve files, including four C programs (*.c) and eight
include files (*.h), as listed in table 3. The CAC Access Software is designed to allow a
programmer both high-level and, if necessary, low-level access to a CAC CDROM. The high-
level routines will be sufficient for most applications, but a user may require low-level access for
more advanced applications that manipulate the image data.

Table 3. CAC Access Software files.

Programs |Description Support files

cachlev.c High level CAC access routines
cacllev.c Low level CAC access routines..
cacmisc.c Routines to access non-image CAC areadrc.h,

data files (e.g., audit trail files) areasorc.h,
cd header.h,
dr header.h,
sg header.h,
pa.h

C language structures and definitions; cac inc.h
required by all four high-level programs

..

Definitions for TS projection system; m4 const.h
required by all four high-level programs . _ _

High-Level Access Routines

The high-level CAC access routines, which are contained in the file cac_hlev. c, consist of
four entry points: cacinit, cac inqpalette, cacSet_ii, and cacgetrc. These routines initialize
the software, read the appropriate color palette, and retrieve the compressed CAC data for either
a specific geographic point (latitude and longitude) or segment (row and column). The high-
level routines will suffice for most user applications, such as displaying CAC data. Examples of
the recommended calling.sequences for these high-level routines are provided in the files
mainrc . c, and main_ 11. c (listed in Appendix D). Appendix A documents the high-level
routines in detail. They and listed here in the intended calling sequence:

* cacinit
Initializes the CAC retrieval software by allocating the necessary. memory for segment
buffering, reading the cdid. dat and cd covrg. dat files from the ID directory on the
specified device, and initializing the internal CAC data structures based on the contents of the
cdid. dat and cdcovrg. dat files.

* cac inqjpalette
Reads and returns the "day", "night" or "mono" color palette that corresponds to the retrieved
CAC segment data. Each CAC color palette file includes three separate palettes: the day
palette is appropriate for daytime flight, the night palette is used for nighttime flight, and the
mono palette uses only gray shades. See Lohrenz, et al., for more information about CAC
color palettes.

3

* cacgetll
Retrieves the pixel value specified by latitude and longitude. Also retrieves the entire
decompressed segment, if required.

* cacgetrc
Retrieves the entire decompressed segment specified by a TS row, column and zone.

Both cac get _ and cac_getrc return the palette identifier for the color palette required to
display the data. If the user requests an invalid latitude and longitude coordinate from cacgetll
or an invalid row and column from cacgetrc the function will return an error status.

Low-Level Access Routines

The low-level CAC access routines, which are contained in the file cac_1lev. c, consist of 23
entry points. These low-level routines are used by the high-level software presented in the
previous section. In addition, programmers that need to manipulate CAC data for more advanced
applications will utilize the low-level access routines. Appendix B documents these routines in
detail. They are listed here in alphabetical order, since the calling sequence may vary between
applications. All floating point numbers are "double" in C.

* cac_free
Frees memory that was allocated by the low-level access routines. This function is called by
the high-level routine cacinit to free memory associated with the buffering of segment data.

* decodekey
Decodes a TS keyname into its row and column components. A TS keyname is an encoded
form of the TS row and column and is used to generate the filename for the TS segment of
interest (see Lohrenz, et al., 1993, for more information about TS keynames and filenames).
The inverse function is encodekey.

* decompress segment
Reads the compressed CAC segment and its codebook, then decompresses the segment.

* doubleto si
Converts a floating-point number to a scaled integer. (Note: this function reduces the
precision of the data). The inverse function is si-to-double.

* encodekey
Encodes a segment row number and column number into a keyname. The inverse function is
decodekey.

* eq2pol
Converts equatorial zone latitude and longitude coordinates into polar zone latitude and
longitude coordinates (see Lohrenz, et al., 1993, for more information about TS polar and
non-polar coordinate systems). The inverse function is pol2eq.

* getdecompressed pixel
Retrieves the specified pixel from a compressed segment without decompressing the entire
segment. This is done by computing the location of the compressed data byte in a two-
dimensional array of compressed data bytes, given the pixel's x and y coordinates.

4

* getsegment name
Builds the CAC compressed segment path name from the current palette area directory name,
row and column components, and TS zone of the requested segment.

* latloncalc
Converts a segment's row and column values to a latitude and longitude coordinate. The TS
zone specification is required for the correct handling of overlap areas. The inverse function
is rccalc.

* load legend data
Reads the specified CAC legend data's header, palette, and image files. Also returns a pointer
to the beginning of the legend image, along with the red, green, and blue (RGB) buffers and
the size in rows and columns of the legend image itself.

* pol2eq
Converts polar zone latitude and longitude coordinates to equatorial zone latitude and
longitude coordinates. The inverse function is eq2pol.

* rc calc
Converts a latitude and longitude coordinate to a segment's row and column values. The zone
specification is required for the correct handling of overlap areas. The inverse function is
latloncalc.

* readcdcovrg
Reads the cd covrg. dat file from the ID directory on the CAC CDROM. The
cdcovrg. dat file contains the approximate rectangular coverages for each palette area
(PA) on the CAC CDROM and the PA's associated TS zone number. (Exception: zone
numbers were not included in the cdcovrg. dat file for early CAC CDROMs. The first
CAC CDROM that did include zone numbers in its cdcovrg. dat file was MDFF library
#CD-1991-A-MAP3-10004. The structure '"nozonecacs," in cac_11ev.c, contains the
PA and zone number associations for all CACs produced prior to CD-1991-A-MAP3-10004).
The cdid. dat must be read first (see read cd id) to correctly process the
cdcovrg. dat file.

* readcd id
Reads the cd id. dat file from the ID directory on the CAC CDROM.

* readcompressed segment
Reads the compressed segment and its codebook, and buffers them into a array of segments.
The number of segments that can be buffered is controlled by the argument passed to the
high-level routine cacinit. Buffering the segments reduces the overhead involved in
re-reading an often-used segment.

* read palette
Reads and returns the "day", "night" or "mono" color palette for the retrieved CAC segment
data.

* read entireypalette
Reads the entire CAC color palette, including the day, night, and mono components. This
routine is used when an application requires the entire palette (i.e., during a copy operation).

5

* read pacoverage
Reads the scaled integer latitude and longitude coordinates from the current PA's
coverage . dat file, and returns them as floating-point numbers.

* remap jpalette
Remaps a CAC color palette (240 entries) to an algebraic palette (216 entries) to allow the
CAC data to be displayed without color flicker. The color flicker is caused by an application
using put the entire systems color palette. The result returned is an array of indices that point
to the algebraic color that is closest to the CAC palette color specified.

* siconvert
Converts a latitude or longitude value from an ASCII string to a scaled integer. The format of
the string is SDDDMMSS . SS where:

S = sign of the latitude or longitude (+ or -; must be present in the string);
DDD -degree portion (000 - 090 for latitude, or 000 - 180 for longitude);
Mm = minutes portion (00 - 59);
ss . ss = seconds portion (00.00 - 59.99).

* sitodouble
Converts a scaled integer to a floating-point number. The inverse function is doubletosi.

* spdec
Decompresses a CAC compressed segment. Due to the peculiarities of MSDOS, this routine
has two different modes (one for MSDOS, and one for VMS and Unix).

Miscellaneous Access Routines

The miscellaneous CAC access routines, which are contained in the file cacmisc . c, consist
of five entry points. These routines are used to access the audit trail data on a CAC CDROM.
The audit trail provides a path back to the original paper charts used to create the ADRG
CDROM. For more information about specific ADRG files referenced in this section, refer to
NIMA (1989). Appendix C documents these routines in more detail.

* readareadrc
Reads the specified areadrc . dat file. This file contains a list of the CAC CDROM path
names of the Distribution Rectangle (DR) files for each ADRG source CDROM in a
particular scale and zone. This list can be used to locate the ADRG DR information for a
particular area of the CAC CDROM.

* readareasorc
Reads the specified areasorc . dat file. This file contains a list of the CAC CDROM path
names of the Source Graphic files for each DR from a source ADRG CDROM in a particular
scale and zone. This list can be used to locate the ADRG source information for a particular
area of the CAC CDROM.

* readcdheader
Reads the specified CD header. dat file. This file contains various information about a
specific ADRG source CDROM.

6

* readdrheader
Reads the specified DR header. dat file. This file contains information about a specific
DR for an ADRG source CDROM.

* read sgheader
Reads the specified sgghed. dat file. The gg in the filename is the source graphics
number (01 - 99). The Source Graphics file contains information about the original paper
chart that was scanned into the ADRG CDROM.

Acknowledgements

This work was funded by the National Imagery and Mapping Agency (NIMA). The authors
thank the program managers at NIMA (Richard Glass and Pat Corkery) for supporting this
project. We also thank our fellow MDFF team members at NRLSSC for their hard work and
dedication to the CAC Processing System and the original CAC library: Marlin Gendron,
Michelle Mehaffey, Stephanie Myrick, and Michael Trenchard.

References

Lohrenz, Maura C., M.E. Trenchard, S.A. Myrick, P.B. Wischow, L.M. Riedlinger (1993). The
Navy Tessellated Spheroid Map Projection System: A Comprehensive Definition.
NRL/FR17441-92-9408. Naval Research Laboratory, Stennis Space Center, MS. August.

Lohrenz Maura C., J.E. Ryan (1990). The Navy Standard Compressed Aeronautical Chart
Database. NOARL Report 8. Naval Research Laboratory, Stennis Space Center, MS. July.

National Imagery and Mapping Agency (1989). Product Specifications for ARC Digitized
Raster Graphics (ADRG), edition. DMA Report PS/2DF/100, April.

7

Appendix A: Entry Point Descriptions for High-Level Access
Routines

Note: byte is typedefed as unsigned char.

cacin.it .9

cac_inpalette 9

cac_get_ 11.......... 10

cac_get-rc 10

8

cacinit

short cacinit (char cac device [],
int num buffers)

cac device: Name of device that CAC CDROM is loaded on.
(char[], passed)

num buffers: Number of segments that can be buffered at a time.
(int, passed)

Returns: 1: Normal.
-1: Error reading CDID.DAT.
-2: Error reading CDCOVRG.DAT.
-3: Error: CDROM is not a valid CAC CDROM.

cacinqjpalette

short cacinqpalette (char type,
short palid,
short *size,
byte red [],
byte green [I,
byte blue [])

type: Type of palette to load (DAY, NIGHT, or MONO)
(char, passed)

palid: Palette identification. This is a four digit number identifying the color palette
to use for the selected segment.
(int, passed)

size: Size of the color palette returned.
(short *, returned)

red: Array of size size containing the RED component of the color palette.
(byte [], returned)

green: Array of size size containing the GREEN component of the color palette.
(byte [], returned)

blue: Array of size size containing the BLUE component of the color palette.
(byte [], returned)

Returns: 1: Normal.
-1: Error opening PALETTE.DAT file.
-2: Error reading PALETTE.DAT file.

9

cacgetlI

short cacget 11 (double on,
double lat,
short *palid,
short *color)

ion: Longitude of requested pixel.
(double, passed)

lat: Latitude of requested pixel.
(double, passed)

palid: Palette identification of pixel at the specified lat and lon.
(short *, returned)

color: Pixel value at specified lat and on. This is the index into the color palette.
(short *, returned)

Returns: 1: Normal
-1: Error: specified (lat, on) point does not fall within bounds specified by

CDCOVRG.DAT file. I.e., the specified data is not on the CDROM.

cacget rc

short cacgetrc (long row,
long col,
short mapzone,
short *palid)

row: Row of requested segment.
(long, passed)

col: Column of requested segment.
(long, passed)

mapzone: TS map zone that the requested segment is in. This is used to allow specifying
segments in zone overlap areas.
(short, passed)

palid: Palette identification of segment at row/col.
(short *, returned)

Returns: 1: Normal
-1: Error: specified map zone is not on this CDROM.
-2: Error: specified segment at row/col is not on this CDROM.

10

Appendix B: Entry Point Descriptions for Low-Level Access Routines

cac_free 12

decode_key 12

decompress-segment 12

double_to_si 12

encode_key 13

eq2pol 13

get_decompressed_pixel 14

getsegmentname 14

latlon_calc 15

load_legend data 16

pol2eq... .17

rc_calc 17

read_cd_covrg 18

read_cd_id 18

read_compressed segment 19

readpacoverage 19

read_palette 20

remap_palette 20

si_convert 21

si_to_double 21

spdec 22

11

cacfree
void cacfree (void)

Returns: None.

decode key

void decodekey (char keyname [],
long *row,
long *col)

keyname: Keyname to decode.
(char [], passed)

row: Row number to encode.
(long *, returned)

col: Column number to encode.
(long *, returned)

Returns: None.

decompresssegment

short decompresssegment (char pafpath [],
unsigned char *decompseg)

pafiath: Complete file specification of CAC segment file to decompress.
(char [], passed)

decompseg: Pointer to array containing the decompressed segment data.
(unsigned char *, returned)

Returns: 1: Normal
-1: Error reading the compressed segment file.

doubleto si

long double to si (double value)

value: Double precision number to convert to a Scaled integer.
(double, passed)

Returns: Encoded scaled integer as a signed long.

12

encode key

void encode key (long *row,
long *col,
char keyname [])

row: Row number to encode.
(long *, passed)

col: Column number to encode.
(long *, passed)

keyname: Resultant encoded keyname.
(char [],returned)

Returns: None.

eq2pol

void eq2pol (double *atin,
double *longin,
double *latout,
double *ongout,
short *zone)

latin: Equatorial latitude to convert.
(double *, passed)

longin: Equatorial longitude to convert.
(double *, passed)

latout: Polar latitude.
(double *, returned)

longout: Polar longitude.
(double *, returned)

zone: Polar zone to use in the conversion.
(short *, passed)

Returns: None.

13

get decompressedixel

short get decompressedpixel (short y,
short x)

y: Y coordinate of a pixel in the compressed segment.
(short , passed)

x: X coordinate of a pixel in the compressed segment.
(short, passed)

Returns: Short integer corresponding to the X and Y coordinates of the requested pixel.

get segment name

void get segment name (char pa_path [],
long row,
long cl,
short zone,
char seg path [])

papath: Path to the palette area subdirectory.
(char [], passed)
Note the "." character at the end of VMS path names, and the "I" or"\" in
Unix or MS-DOS filenames. The following are sample paths to the same
palette area subdirectory on VMS, Unix, and MS-DOS systems:

VMS: CDROM: [MAP3PA012901.
Unix: /cdrom/map3/paO12901/
MSDOS: D:\map3\pa012901\

row: Row number of segment to decompress.
(long, passed)

col: Column number of segment to decompress.
(long, passed)

zone: Tesselated Sphere zone number cooresponding to papath.
(short, passed)

seg path: Complete path specification for requested segment.
(char [], returned)
E.g., VMS: CDROM:[MAP3.PA012901.R000015]12345678.214

Unix: /cdrom/map3/paO12901/r0O0015/12345678.214
MSDOS: D:\map3\paO12901\r000015\12345678.214

Returns: None.

14

latloncalc

void latloncalc (short *zone,
short *scale,
long *row,
long *col,
double at,
double *lon)

zone: Zone to use in the conversion to latitude/longitude.
(short *, passed)

scale: Scale to use in the conversion to latitude/longitude.
(short *, passed)

row: Tesselated sphere row number to convert.
(long *,passed)

col: Tesselated sphere column number to convert.
(long *,passed)

lat: Latitude based on scale, zone, row and column.
(double *, returned)

Ion: Longitude based on scale, zone, row and column.
(double *, returned)

Returns: None.

15

load legend data

void load legend data (char legend path [],
unsigned char **legend ptr,
unsigned char rbuf[],
unsigned char gbuf [],
unsigned char bbuf[],
unsigned long *legend x,
unsigned long *legendjy)

legendpath: File specification of the directory containing the legend data.
(char [], passed)

legendfitr: Pointer to the beginning of the array containing the legend image data.
(unsigned char **, returned)

rbuf Red component of the legend image's palette.
(unsigned char [], returned)

gbuf Blue component of the legend image's palette.
(unsigned char [], returned)

bbu f Green component of the legend image's palette.
(unsigned char [], returned)

legend x: Size of the legend image in the "x" direction (columns).
(unsigned long *, returned)

legendy: Size of the legend image in the "y" direction (rows).
(unsigned long *, returned)

Returns: 1: Normal
-1: Error opening legend header file.
-2: Error reading legend header file.
-3: Error opening legend image file.
-4: Error reading legend image file.

16

pol2eq

void pol2eq (double *latin,
double *longin,
double *latout,
double *longout)

latin: Polar latitude to convert.
(double *, passed)

longin: Polar longitude to convert.
(double *, passed)

latout: Equatorial latitude.
(double *, returned)

longout: Equatorial longitude.
(double *, returned)

Returns: None.

rccalc

void rccalc (double *lat,
double *lon,
short *scale,
short *zone,
long *row,
long *co)

lat: Latitude to convert.
(double *, passed)

ion: Longitude to convert.
(double *, passed)

scale: Scale to use in the conversion to row/column.
(short *, passed)

zone: Zone to use in the conversion to row/column.
(short *, passed)

col: Tesselated sphere column number based on specified scale and zone.
(long *,returned)

row: Tesselated sphere row number based on specified scale and zone.
(long *,returned)

Returns: None

17

read cd covrg

short read cd covrg (char path[],
char panums[MAX PAS[8],
short *um_pas,
double palaton[MAXPAS][4],
char pa zones[MAX PA S)

path: Complete path specification to the CDROM's CDCOVRG.DAT file.
(char [], passed)

pa-nums: Two-dimensional array of palette area names from the CDCOVRG.DAT file.
Each palette area name is eight bytes. The maximum number of possible
palette areas on one CDROM is MAX-PAS (see CACINC.H).
(char [][8], returned)

numjpas: The number of palette areas on the CDROM.
(short *, returned)

pa-latlon: Two dimensional array of approximate coverages of each palette area on the
CDROM. The order of the latitude/longitude data in the array is as follows:
[*] [0] = West longitude
[*][1] = East longitude
[*][2] = South latitude
[*][3] = North latitude
(double [][4], returned)

pa zones: Array of TS zone numbers corresponding topa_nums above.
(char [], returned)

Returns: 1: Normal
-1: Error opening CDCOVRG.DAT file.
-2: Error reading the number of palette areas from CDCOVRG.DAT file.
-3: Error reading a palette area name from CDCOVRG.DAT file.
-4: Error reading a palette area lat/lon set from CDCOVRG.DAT file.

read cd id

short read cd id (char path[],
char data[])

path: Complete path specification to the CDROMs CDID.DAT file.
(char [], passed)

data: Contents of specified CDID.DAT file.
(char [], returned, requires twenty bytes)

Returns: 1: Normal
-1: Error opening CDID.DAT file.
-2: Error reading CDID.DAT file.

18

read compressed segment

short read compressed segment (char pa.path[],
unsigned char *codebook,
unsigned char *compseg)

pajath: Complete file specification of CAC segment file of interest.
(char [], passed)

codebook: Codebook to decompress segment (codebook requires 1024 bytes of memory).
(unsigned char *, returned)

compseg: Compressed segment to be decompressed (compressed segment requires 16384
bytes of memory).
(unsigned char *, returned)

Returns: 1: Normal
-1: Error opening compressed CAC segment file.
-2: Error reading compressed CAC segment codebook.
-3: Error reading compressed CAC segment data.

readpa_coverage

short readjpacoverage (char name[],
double *minlon,
double *maxlon,
double *minlat,
double *maxlat)

name: PA coverage filename (full path).
(char [], passed)
E.g., VMS: CDROM:[MAP3.PA012901]COVERAGE.DAT

Unix: /cdrom/map3/paO12901/coverage.dat
MSDOS: D:\map3\pa012901\coverage.dat

minion: Minimum longitude coordinate.
(double *, returned)

maxIon: Maximum longitude coordinate.
(double *, returned)

minlat: Minimum latitude coordinate.
(double *, returned)

maxIat: Maximum latitude coordinate.
(double *, returned)

Returns: 1: Normal
-1: Error opening PA COVERAGE.DAT file.
-2: Error reading PA COVERAGE.DAT file.

19

read palette

short readjpalette (char type,
char path[],
unsigned char red[],
unsigned char green [,
unsigned char blue[])

type: Color palette type (day, night, mono).
(char, passed)

path: Complete file specification of CAC color palette.
(char [], passed)

red: Red component of color palette (requires at least 256 bytes).
(unsigned char *, returned)

green: Green component of color palette (requires at least 256 bytes).
(unsigned char *, returned)

blue: Blue component of color palette (requires at least 256 bytes).
(unsigned char *, returned)

Returns: 1: Normal
-1: Error opening CAC color palette.
-2: Error reading CAC color palette.

remap palette

unsigned char *remapJpalete (unsigned char red[],
unsigned char green[],
unsigned char blue[])

red: Red component of color palette to remap.
(unsigned char *, returned)

green: Green component of color palette to remap.
(unsigned char *, returned)

blue: Blue component of color palette to remap.
(unsigned char *, returned)

Returns: Pointer to an array containing indices that represent the mapping of the
specified CAC color map entries to the nearest color in an algebraic color map.

20

si convert

long si convert (char value[],
short type)

value: Character string of latitude or longitude to convert to a scaled integer number.
The sign of the latitude and longitude value (i.e., "+" or "-") must be present.
(char [], passed)

type: Denotes whether value is a longitude or latitude (0 = longitude, 1 = latitude).
(enum{longitude,latitude}, passed)

Returns: The scaled integer of value is returned as a signed long.

si to_double

double si todouble (long si)

si: Scaled integer to be converted to a double.
(long, passed)

Returns: Double equivalent of decoded scaled integer.

21

spdec

VMS and Unix usage:

void spdec (unsigned char inptr[16384],
unsigned char scbptr[l 6384],
unsigned char outptr[65536])

inptr: Compressed segment (assumed to be 16384 bytes) to be decompressed.
(unsigned char [], passed)

spcbptr: Codebook (assumed to be 1024 bytes) to decompress the segment.
(unsigned char [], passed)

outptr: Decompressed segment (requires 65536 bytes).
(unsigned char [],returned)

Returns: None.

MSDOS usage:

void spdec (unsigned char far inptr[l 6384],
unsigned char far spcbptr[J 6384],
unsigned char far outptr[65536])

inptr: Compressed segment (assumed to be 16384 bytes) to be decompressed.
(unsigned char far [], passed)

spcbptr: Codebook (assumed to be 1024 bytes) to decompress the segment.
(unsigned char far [], passed)

outptr: Decompressed segment (requires 65536 bytes).
(unsigned char far [],returned)

Returns: None.

22

Appendix C: Entry Point Descriptions for Miscellaneous Access
Routines

read_areadrc 24

read_areasorc 24

read_cdheader 25

read_drheader 25

read_sgheader 25

23

read areadrc

Must include file areadrc . h.

short read areadrc (char path[],
struct areadrc *areadrc,
short *numpas)

path: Complete file specification of the AREADRC.DAT file.
(char [], passed)

areadrc: Structure to contain data read from AREADRC.DAT file.
(struct areadrc *, returned)

numpas: Number of PA areas (zones) in the AREADRC.DAT file.
(short *, returned)

Returns: 1: Normal
-1: Error opening AREADRC.DAT file.
-2: Error reading AREADRC.DAT file.

read areasorc

Must include file areasorc . h.

short read areasorc (char path[],
struct areasorc *areasorc,
short *numpas)

path: Complete file specification of the AREASORC.DAT file.
(char [], passed)

areasorc: Structure to contain data read from AREASORC.DAT file.
(struct areasorc *, returned)

numpas: Number of PA areas (zones) in the AREASORC.DAT file.
(short *, returned)

Returns: 1: Normal
-1: Error opening AREASORC.DAT file.
-2: Error reading AREASORC.DAT file.

24

(Must include file cd_header. h).

short read cdheader (char path[],
struct cdheader *cdheader,
short *numpas)

path: Complete file specification for the CD HEADER.DAT file.
(char [], passed)

cdheader: Structure to contain data read from CD HEADER.DAT file.
(struct cdheader *, returned)

Returns: 1: Normal
-1: Error opening CD HEADER.DAT file.
-2: Error reading CD HEADER.DAT file.

read drheader (Must include file drheader. h).

short read drheader (char path[],
struct drheader *drheader,
short *numpas)

path: Complete file specification of the DR HEADER.DAT file.
(char [], passed)

drheader: Structure to contain data read from DR HEADER.DAT file.
(struct drheader *, returned)

Returns: 1: Normal
-1: Error opening DR HEADER.DAT file.
2: Error reading DR HEADER.DAT file.

read sgheader (Must include file sgheader. h).

short read sgheader (char path[],
struct sgheader *sgheader,
short *numpas)

path: Complete file specification of the SG HEADER.DAT file.
(char [], passed)

sgheader: Structure to contain data read from SG HEADER.DAT file.
(struct sgheader *, returned)

Returns: 1: Normal
-1: Error opening SG HEADER.DAT file.
-2: Error reading SG HEADER.DAT file.

25

read cdheader

Appendix D: High Level Function Calling Order

main_1l.c..... 27

mainm_rc.c....... 29

26

main_l1.c

#include "cacinc.h"
#include "m4_const.h"

int main (unsigned int argc, char *argv[])

short size, i;

int status;
double lat,lon;

short color;

short palid, prevpalid=O;

char debug=O;

static unsigned char decompseg[256][256]; /* Decompressed CAC segment *1

unsigned char red[256], /* Selected color palette */
green[256],
blue[256];

/* argv[1]: CDROM device name */
/* argv[2]: Number of segments to buffer */

cacinit (argv[1], atoi(argv[2]));

while (TRUE)

{
printf("Lat,Lon (separated by a comma): ");

scanf ("%lf,%lf', &lat,&lon);

status = cacgetll (lon, lat, &palid, &color);

if (status = 1)

{
printf ("Lat: %6.21f Lon: %7.21f\n", lat, lon);

printf ("Row: %6d Col: %6d\n", cac.row, cac.col),

printf (" Palette ID: %d\n", palid);

printf ("Pixel color: %d\n", color);

if (prevpalid != palid)

{
status = cacintpalette (day, palid, &size, red, green, blue);

printf ("Palette loaded for PA#: %d\n",palid);

prevpalid = palid;

27

if (debug)
for (i=O; i<size; i++)

printf("%x %x %x\n", red[i],green[i],blue[i]);

}
}
else

printf ("Position NOT found on CAC...\n");

} /* End "while (TRUE)" */

}

28

main_rc.c

#include "cacinc.h"

#include "m4_const.h"

int main (unsigned int argc, char *argv[])

short size, i;

unsigned char red[256], /* Selected color palette */
green[256],
blue[256];

int status;
long row,col;

short color, mapzone;

short palid, prevpalid=0;

char debug=O;

static unsigned char decompseg[256][256]; /* Decompressed CAC segment */

/* argv[l]: CDROM device name */
/* argv[2]: Number of segments to buffer */

cacinit (argv[1], atoi(argv[2]));

while (TRUE)

{~~
printf("Row,Column,Zone (separated by commas): ");

scanf ("%ld,%ld,%d", &row, &col, &mapzone);

status = cacgetrc (row, col, mapzone, &palid, (unsigned char *)decompseg);

if (status)

{
printf ("Row: %61d Col: %61d\n", row, col);

printf (" Palette ID: %d\n", palid);

printf (" cac.row: %61d cac.col: %61d\n", cac.row, cac.col);

if (prevpalid != palid)

{
status = cac-inpalette (day, palid, &size, red, green, blue);

printf ("Palette loaded for PA#: %d\n",palid);

prev_palid = palid;

29

if (debug)
for (i=O;i<size;i++)

printf ("%x %x %x\n",red[i],green[i],blue[i]);

}

else
printf ("Position NOT found on CAC...\n");

} /* End "while (TRUE)" */

}

30

